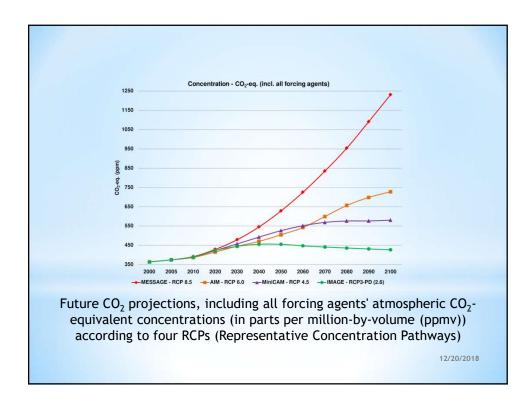
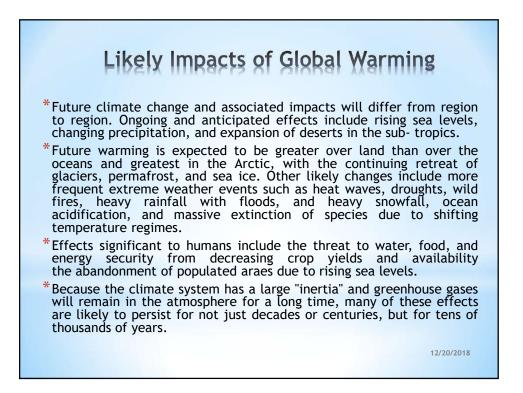
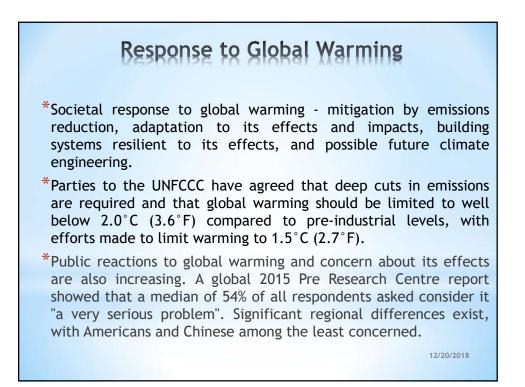
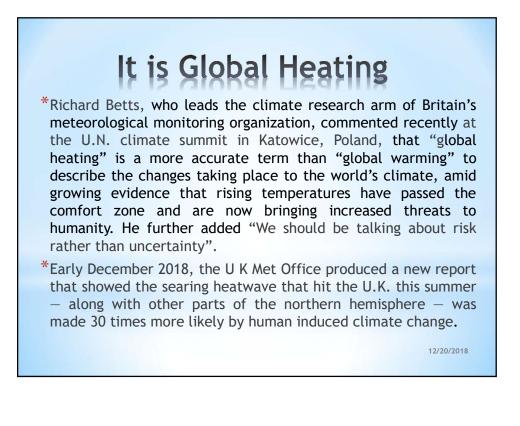
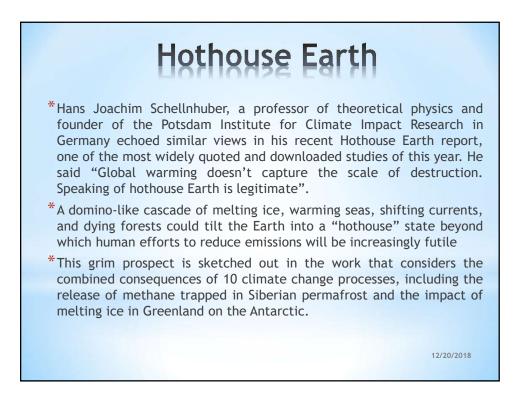

4

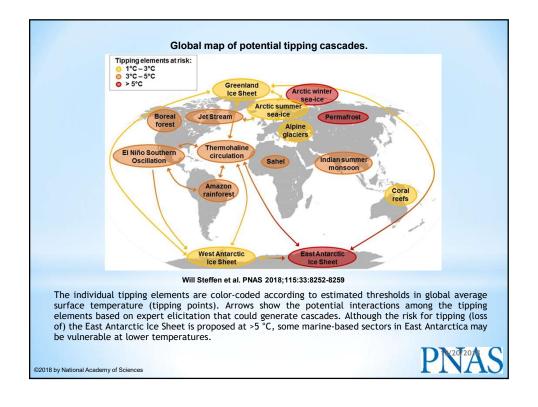

PCC


\*The IPCC produces reports that support the United Nations Framework Convention on Climate Change (UNFCCC), which is the main international treaty on climate change. The ultimate objective of the UNFCCC is to "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic [i.e., human-induced] interference with the climate system".


\*IPCC reports cover "the scientific, technical and socio-economic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts and options for adaptation and mitigation."

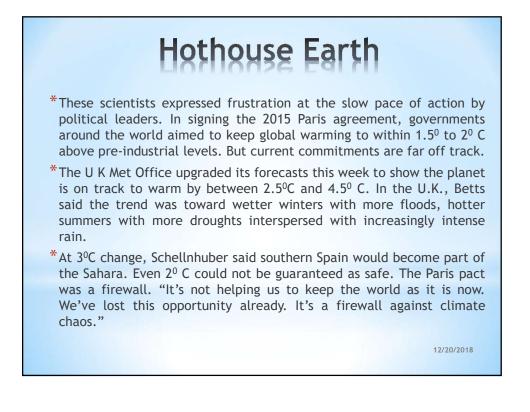

\*The IPCC does not carry out its own original research, nor does it do the work of monitoring climate or related phenomena itself. The IPCC bases its assessments on published literature, which includes peer-reviewed and non-peer-reviewed sources.

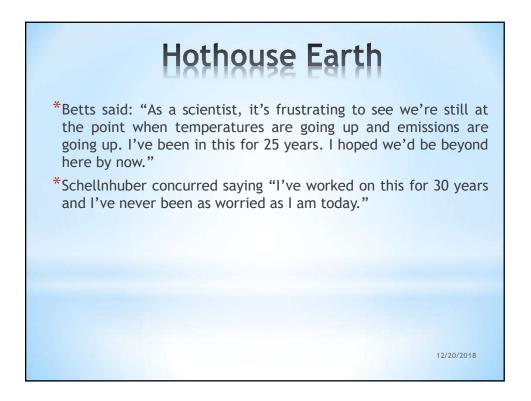


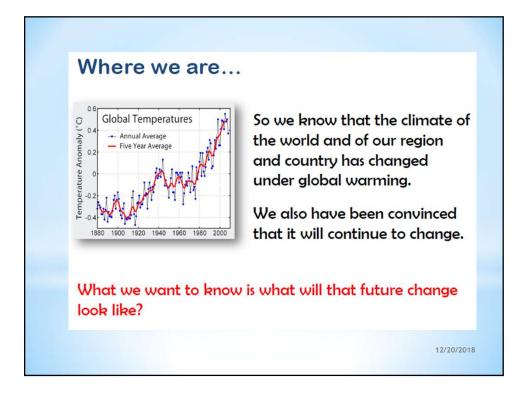



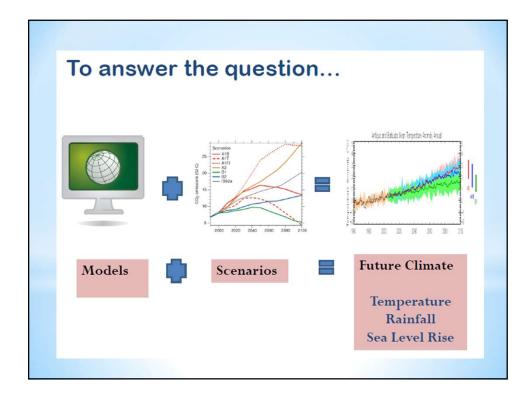


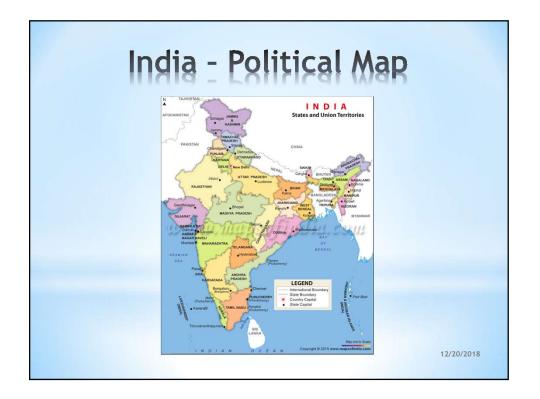


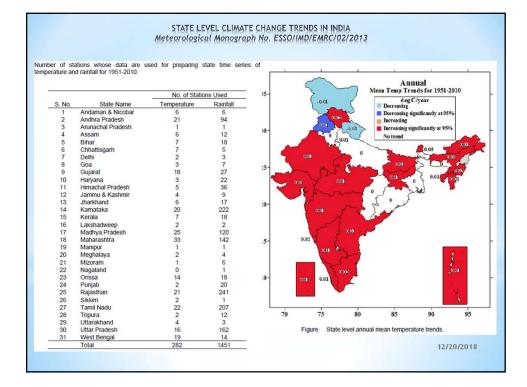



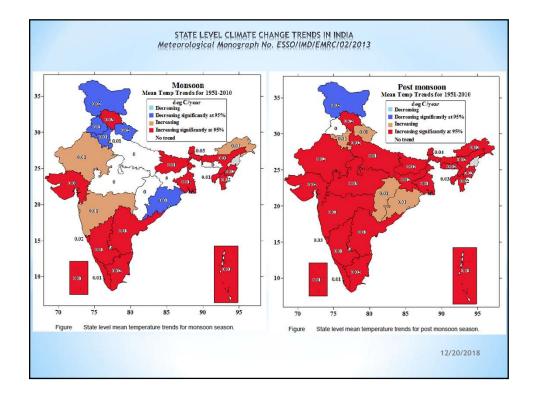



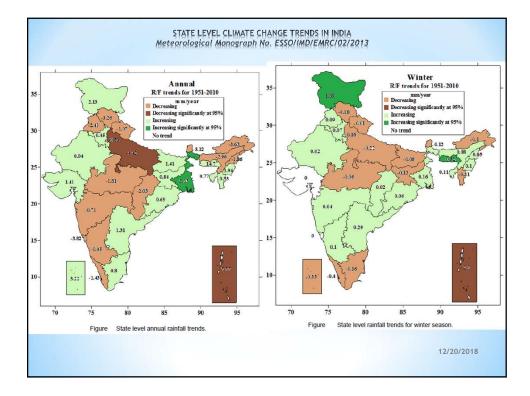



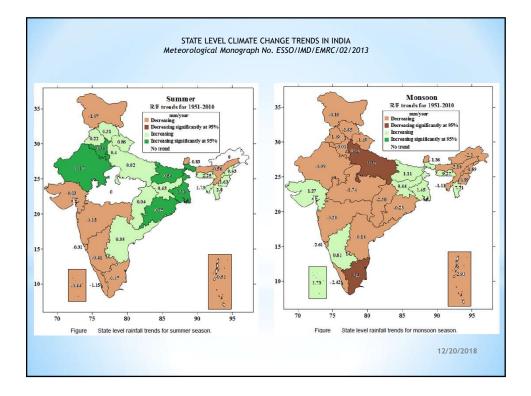


# Hothouse Earth

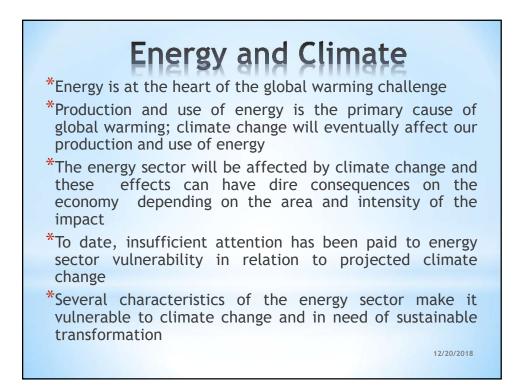

- \*The scientists involved in the study warned that the Paris commitment to keep warming at 2°C above pre-industrial levels may not be enough to "park" the planet's climate at a stable temperature.
- \*They warn that the hothouse trajectory "would almost certainly flood deltaic environments, increase the risk of damage from coastal storms, and eliminate coral reefs (and all of the benefits that they provide for societies) by the end of this century or earlier."
- \*Another study published in the PNAS reveals that increased rainfall - a symptom of climate change in some regions - is making it harder for forest soils to trap greenhouse gases such as methane.

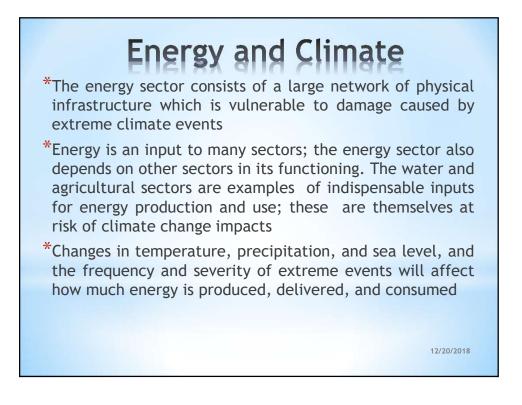


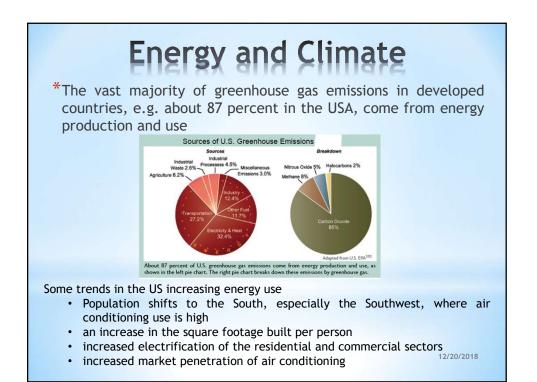



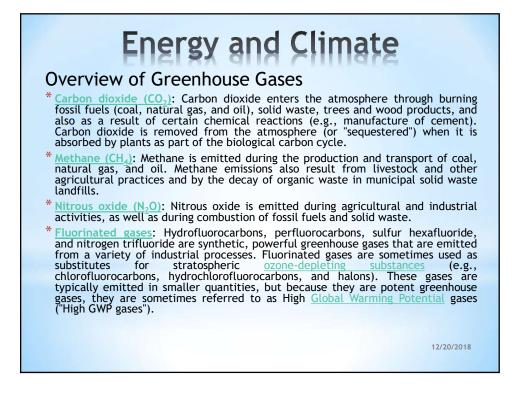



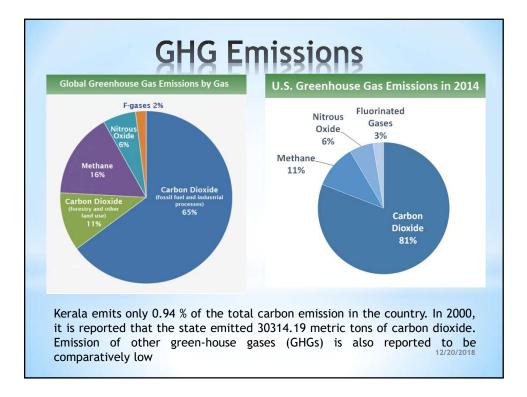



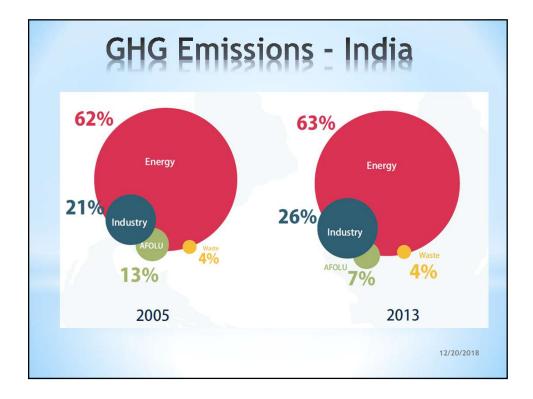



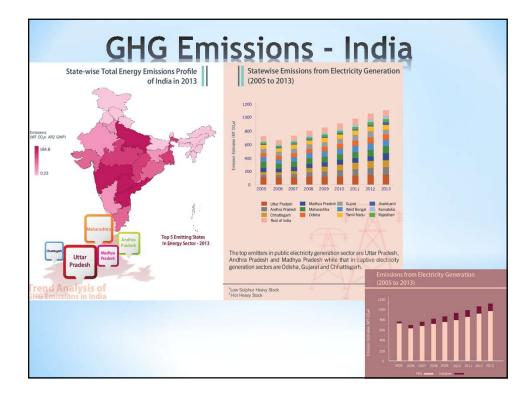



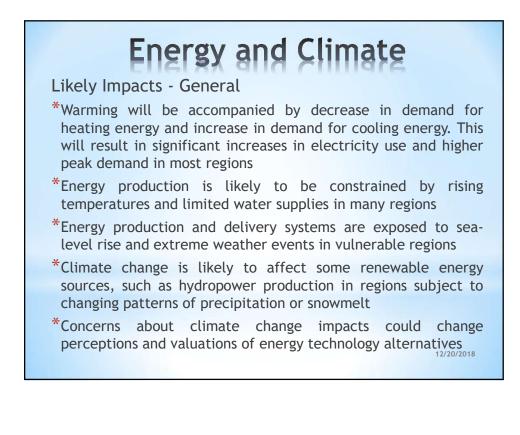



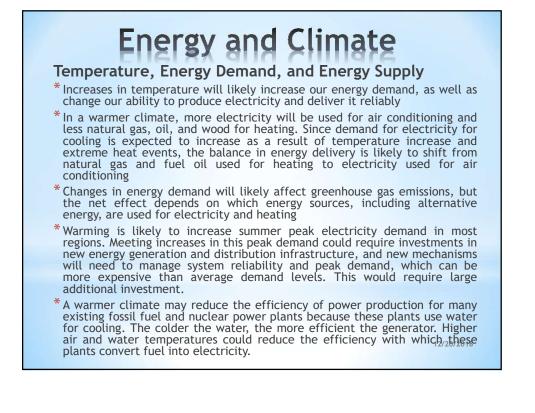



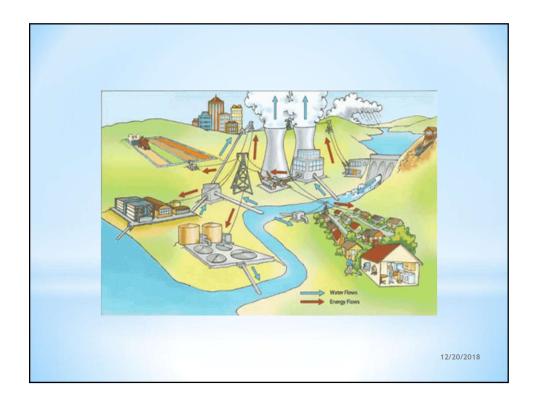








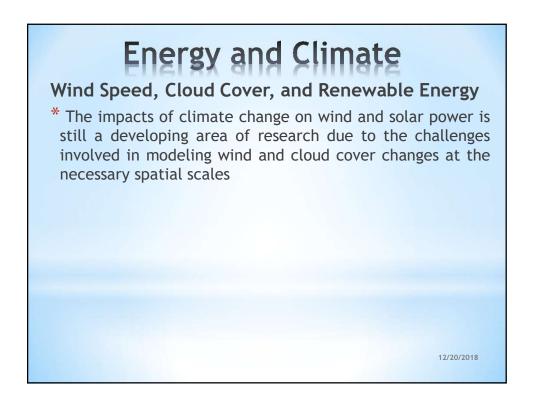


Likely Impacts - General

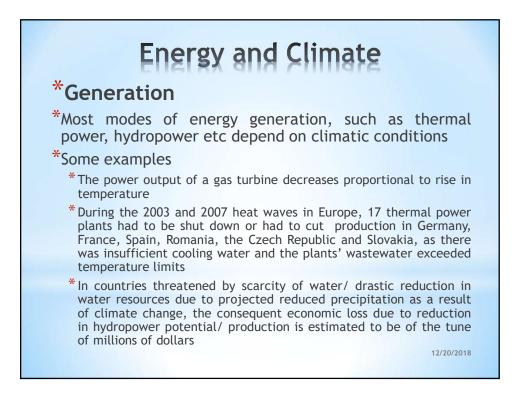
- \* Warming may reduce energy used directly in certain processes such as residential, commercial, and industrial water heating, and increases energy used for residential and commercial refrigeration and industrial process cooling (e.g., in thermal power plants or steel mills)
- \*It may cause an increase in the energy used to supply other resources for climate-sensitive processes, such as pumping water for irrigated agriculture and municipal uses
- \*It can change the balance of energy use among delivery forms and fuel types, as between electricity used for air conditioning and natural gas used for heating
- \*It changes energy consumption in key climate-sensitive sectors of the economy, such as transportation, construction, agriculture, and others



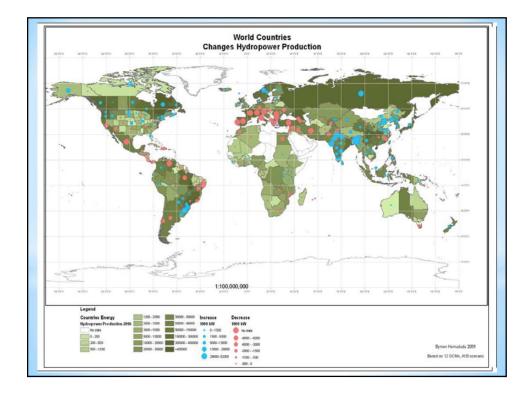
#### Water Availability and Energy

- \* Energy and water systems are connected. Energy is needed to pump, transport, and treat drinking water and wastewater. Cooling water is needed to run many of today's power plants. Hydroelectricity) is itself an important source of power. Changes in precipitation, increased risk of drought, reduced snowpack, and changes in the timing of snowmelt in spring will influence our patterns of energy and water use. For e.g., power plants can require large amounts of water for cooling. On average, a kilowatt-hour of electricity (enough power to run 400 typical compactfluorescent light bulbs for an hour) requires 25 gallons of water to be withdrawn from rivers or lakes.
- \* More frequent and severe heat waves will likely increase the demand for electricity. At the same time, these areas are likely to experience reduced water supplies due to increased temperature and evaporation, as well as possible decreased rainfall. Since water is necessary for electricity production, these combined effects could stress water resources.
- \* Hydroelectric power plants are sensitive to the volume and timing of stream flows. In some regions, especially during times of increased rainfall, dam operators may have to allow some water to bypass the electric turbines to prevent downstream flooding. Maintaining stream flow for hydroelectric dams could present conflicts with other activities.



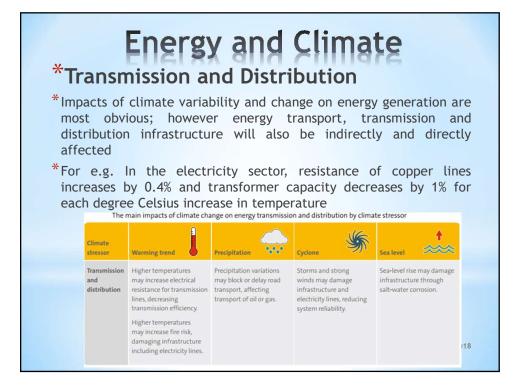


#### Water Availability and Energy

- \*Growing crops for biomass and biofuel energy could stress water resources in certain regions, depending on the type of crop, where it is grown, agricultural production in the region, and current water and nutrient management practices. Given the many factors involved, more research is needed to understand how climate change may affect these resources.
- \* Rising temperatures, increased evaporation, and drought may increase the need for energy-intensive methods of providing drinking and irrigation water. For example, desalinization plants can convert salt water into freshwater, but consume a lot of energy. Climate change may also require irrigation water to be pumped over longer distances, particularly in dry regions.


12/20/2018

<section-header><section-header><section-header><section-header>

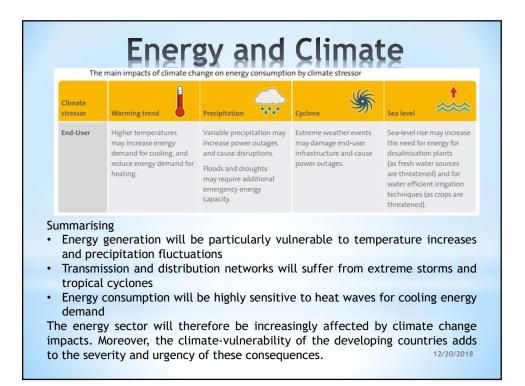





| Climate<br>stressor | Warming trend                                                                                                                                                                                                | Precipitation 4646                                                                                                    | Cyclone                                                                                                                               | Sea level                                                      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Hydro power         | High temperatures<br>may induce glacier<br>melting, increasing water<br>quantities in hydro basins.<br>Extreme temperatures<br>may affect energy<br>generation due to<br>increased reservoir<br>evaporation. | Changes in precipitation<br>may increase run-off<br>variability.<br>Droughts may affect<br>run-off and energy output. | Equipment damage may<br>decrease output.                                                                                              | No significant impact                                          |
| Wind power          | Increased temperatures<br>may decrease air density<br>decreasing energy output.                                                                                                                              | No significant impact                                                                                                 | Alteration in wind speed<br>may increase output<br>variability.<br>Damage from cyclones<br>may decrease plant<br>lifetime and output. | Sea-level rise may damage<br>off-shore infrastructure.         |
| Biomass             | Increased temperatures<br>may impact crop yield and<br>irrigation needs.<br>Extreme temperatures<br>may induce fires and<br>threaten crops.                                                                  | Precipitation fluctuations<br>may cause variable<br>irrigation needs.<br>Droughts may impact crop<br>yield.           | Storms may threaten crop yield.                                                                                                       | Erosion and salinisation<br>may threaten crop<br>productivity. |



The hydropower sector will be particularly affected by changes in run-off due to snow and glacier melt, rainfall variability, heat waves, droughts, floods as well as extreme storms. The projected changes in hydropower generation in 2050 are presented based on the IPCC A1B emissions scenario from 12 General Circulation Models (GCM) w.r.t. the hydropower production in 2006


| Climate<br>stressor                | Warming trend                                                                                                                                                       | Precipitation                                                                                                                                                       | Cyclone                                                                                                                  | Sea level                                                                                       |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Solar power17                      | High temperatures may<br>reduce solar PV cell<br>efficiency.<br>High temperatures may<br>alter Concentrated Solar<br>Power (CSP) efficiency (see<br>Thermal power). | Increased cloud cover<br>may decrease solar PV<br>generation output.<br>Droughts may affect<br>Concentrated Solar Power<br>(CSP) generation (see<br>Thermal power). | Extreme events may<br>damage structures and<br>decrease plant lifetime.                                                  | No significant impact                                                                           |
| Thermal<br>power <sup>18, 19</sup> | Higher temperature<br>of cooling water may<br>decrease plant efficiency.                                                                                            | Increased water content<br>may affect fossil fuel<br>quality.<br>Droughts may affect water<br>availability for cooling.                                             | Cyclones may damage<br>plant infrastructure.                                                                             | Sea-level rise may increa<br>risk of damage to off-sho<br>infrastructure and coast<br>stations. |
| P                                  | olar power includes: photovoltaic (PV) and Co<br>wer (CSP).<br>hermal power includes: fossil fuel powered p                                                         | Geotherma                                                                                                                                                           | gy is not being considered as it is still at the<br>I is not being considered as it will not be sig<br>y climate change. |                                                                                                 |

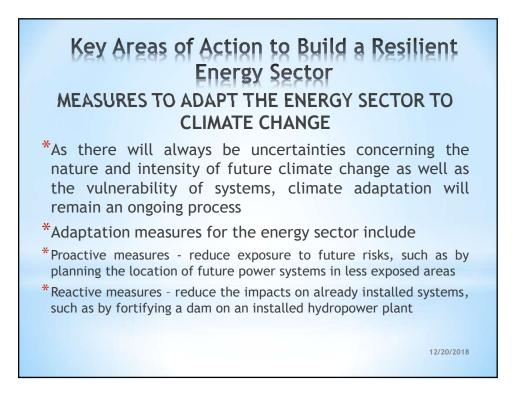


#### \*Energy Consumption

\*Energy demand will considerably increase due to development and population growth, prompting changes in usage of energy. Global warming will induce increased energy needs for cooling in summer seasons and decreased heating needs in winter seasons. Overall, additional energy reserves and emergency energy capacity will be needed for extreme events, such as heat waves.

\*For e.g. In Thailand, a global temperature rise of 1.7 to 3.4<sup>o</sup> C could induce an increase in peak electricity demand by 6.6% to 15.3% by 2080.

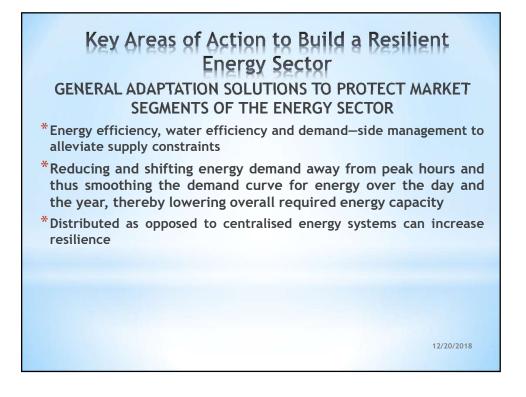


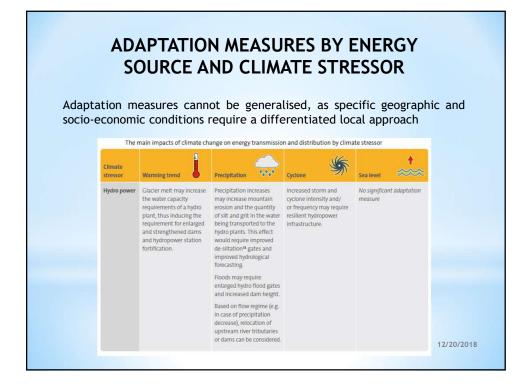

#### Key Areas of Action to Build a Resilient Energy Sector MEASURES TO ADAPT THE ENERGY SECTOR TO CLIMATE CHANGE

\* Climate proofing refers to the "consideration and internalisation of the risks and opportunities that climate change scenarios are likely to imply for the design, operation, and maintenance of infrastructure"

\* Climate proofing also includes prevention of maladaptation, which is "adaptation that does not succeed in reducing vulnerability but increases it instead". For e.g., simply providing a community with access to energy can lead to over-extraction of natural resources. Often water is the targeted resource

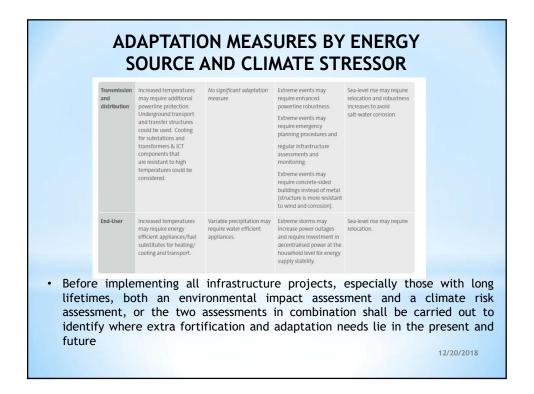
\* In general, energy generation also requires immense quantities of water, making the challenge of balancing water availability with energy demand and supply an issue of increasing urgency and importance. Whilst energy will predominantly contribute positively to climate change adaptation, awareness of maladaptation must exist during energy project planning and implementation.


\* Projects must be implemented using a holistic approach considering all the natural, human, social and financial resources specific to the socioecological system where the project is based




### Key Areas of Action to Build a Resilient Energy Sector

#### GENERAL ADAPTATION SOLUTIONS TO PROTECT MARKET SEGMENTS OF THE ENERGY SECTOR


- \*Ensure enough adaptive capacity to address climate change uncertainty - Adaptive capacity refers to the "ability or potential of a system to respond successfully to climate variability and change". This can be facilitated through the control and access to social, human, natural and financial resources.
- \* Access to energy, in particular in rural areas, in developing countries to reduce climate vulnerability - As extending an electricity network to rural regions is often costly, an effective means to increase energy access in rural areas is through off-grid decentralised renewable energy systems.
- \* Energy diversification to eliminate reliance on one single generation source to enhance security of supply





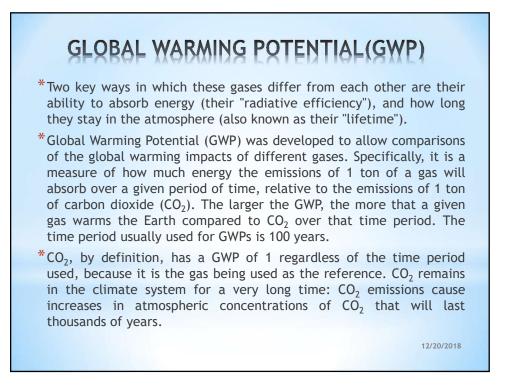
| Wind power | No significant adaptation<br>measure                                                             | Flood risks may require plant relocation.                                                                                                                                                                                                                      | Increased storms and<br>cyclones may require<br>turbine designs to<br>withstand high wind<br>speeds.<br>Increased wind speeds<br>will be maximal at higher<br>altitudes and in order to<br>capture the strongest<br>winds higher towers could<br>be used.<br>Variation in wind<br>speed may require the<br>consideration of vertical<br>axis turbines as the latter<br>are less sensitive to rapid<br>changes in wind direction. | Sea-level rise may require<br>plant relocation.                                                 |          |
|------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------|
| Blomass    | Higher temperatures may<br>require crop species that<br>can tolerate these high<br>temperatures. | Precipitation uncertainties<br>may require enhanced<br>irrigation systems.<br>Increased precipitation<br>may require crop<br>selections for biomass that<br>can tolerate higher water<br>stresses.<br>Floods may require<br>building of dykes and<br>drainage. | Storms may require early<br>warning systems for<br>emergency harvesting.                                                                                                                                                                                                                                                                                                                                                         | Sea-level and risk of<br>salinisation may require<br>building of dykes and<br>drainage systems. | 12/20/20 |

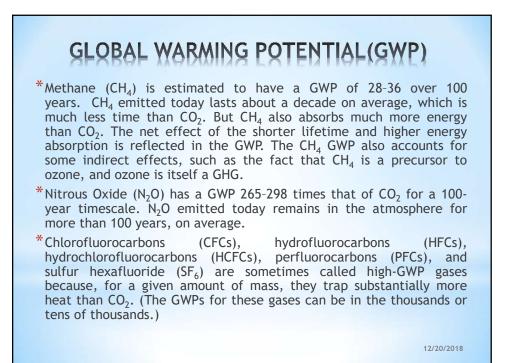
| Solar power      | Increased temperatures<br>may require increased<br>airflow beneath mounting<br>structure to cool.                                                                                                                          | Decreased precipitation<br>risks for CSP plants may<br>require air cooling systems<br>instead of water cooling<br>systems. Water re-use can<br>also be considered.                                                                                                                                         | Increased storms and<br>cyclones may require<br>panels designed to<br>withstand strong winds.                                                                                                                                                                                 | Sea-level rise may requi<br>plant relocation.                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Thermal<br>power | Increased temperatures<br>may require more<br>efficient cooling systems<br>(wastewater usage, water<br>reuse, water recovery from<br>heat exchangers, reduction<br>of evaporative losses) and<br>decentralised generation. | Droughts and floods may<br>require improvements<br>in robustness of plant<br>stations.<br>Flood risks may require<br>relocation of storage<br>reservoirs.<br>Decreased precipitation<br>may require air cooling<br>systems instead of<br>water cooling systems.<br>Water re-use can also be<br>considered. | Storm risks may require<br>improvements in<br>robustness of plant<br>stations.<br>Extreme events may<br>require additional storage<br>capacity.<br>Extreme events may<br>require mergency<br>planning procedures.<br>Increased storms may<br>require wind proof<br>standards. | Sea-level rise may<br>require plant relocation<br>flood control systems<br>(embankments, dykes,<br>ponds, barriers). |

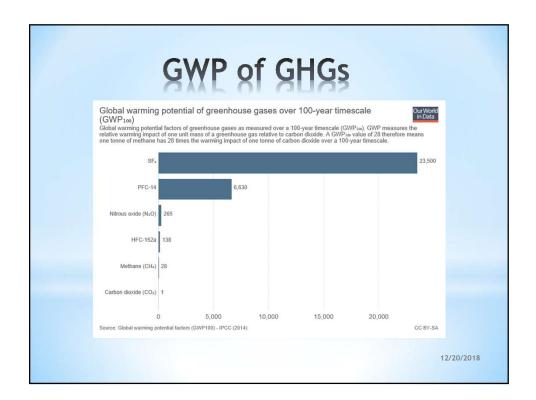


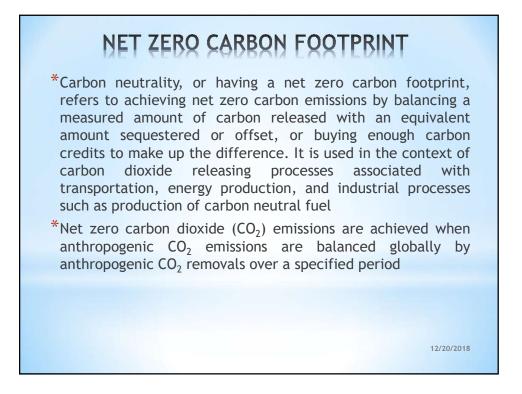
#### CARBON FOOTPRINT

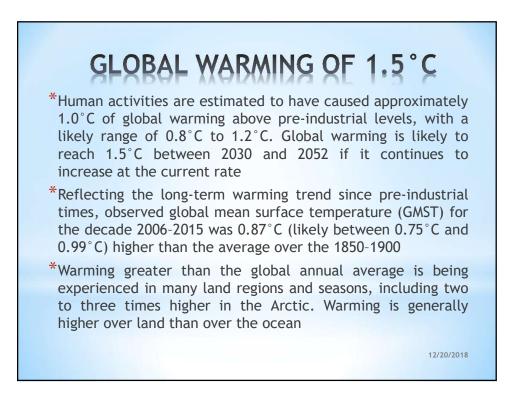
\*Total emission caused by an individual event, organization or product expressed as carbon dioxide equivalent

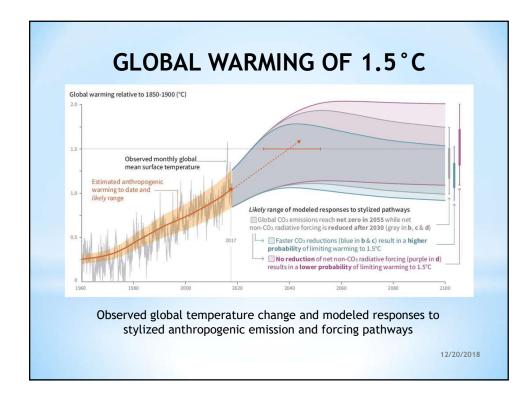

 $CO_2$ e (Carbon dioxide equivalent) is the measure of describing how much global warming a given type and amount of greenhouse gas (GHG) may cause, using the functionally equivalent amount or concentration of CO<sub>2</sub> as the reference

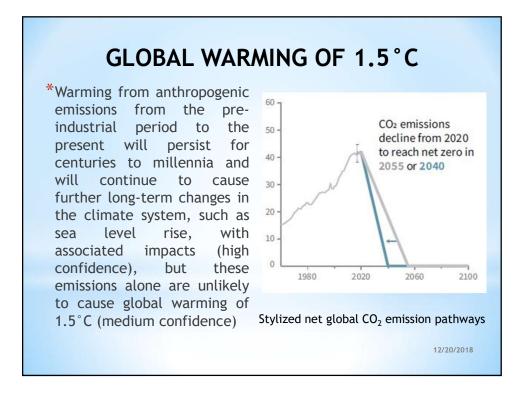

\* The total amount of  $CO_2$  and other greenhouse gases emitted over the full life cycle of a product or process, from extraction of raw materials through to decommissioning


\*Expressed as gCO<sub>2</sub>eg/kWh - accounts for the GWP of other GHGs


#### GLOBAL WARMING POTENTIAL (GWP)

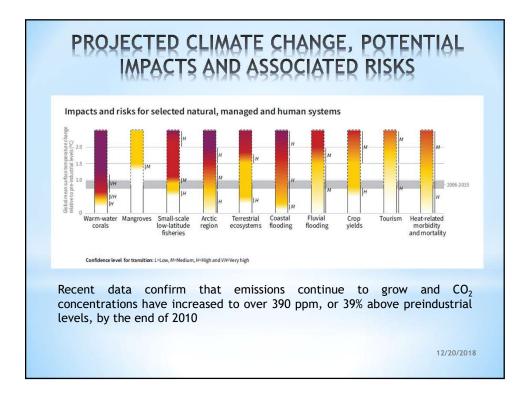

Global warming potential (GWP) is a relative measure of how much heat a greenhouse gas traps in the atmosphere. It compares the amount of heat trapped by a certain mass of the gas in question to the amount of heat trapped by a similar mass of carbon dioxide. GWP is calculated over a specific time interval, commonly 20, 100, or 500 years and is expressed as a factor of carbon dioxide












#### PROJECTED CLIMATE CHANGE, POTENTIAL IMPACTS AND ASSOCIATED RISKS

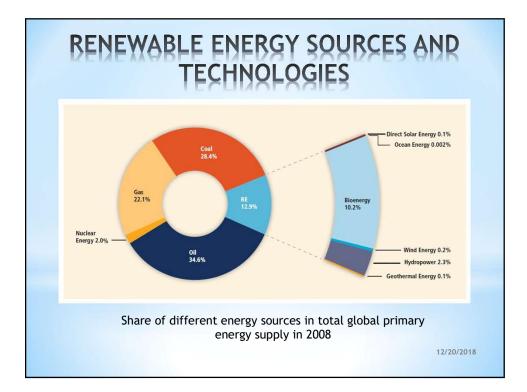
- \*Climate models project robust differences in regional climate characteristics between present-day and global warming of 1.5°C, and between 1.5°C and 2°C. These differences include increases in: mean temperature in most land and ocean regions (high confidence), hot extremes in most inhabited regions (high confidence), heavy precipitation in several regions (medium confidence), and the probability of drought and precipitation deficits in some regions (medium confidence)
- \* By 2100, global mean sea level rise is projected to be around 0.1 meter lower with global warming of 1.5°C compared to 2°C (medium confidence). Sea level will continue to rise well beyond 2100 (high confidence), and the magnitude and rate of this rise depend on future emission pathways. A slower rate of sea level rise enables greater opportunities for adaptation in the human and ecological systems of small islands, low-lying coastal areas and deltas (medium confidence)
- \* On land, impacts on biodiversity and ecosystems, including species loss and extinction, are projected to be lower at 1.5°C of global warming compared to 2°C. Limiting global warming to 1.5°C compared to 2°C is projected to lower the impacts on terrestrial, freshwater and coastal ecosystems and to retain more of their services to humans (high confidence).

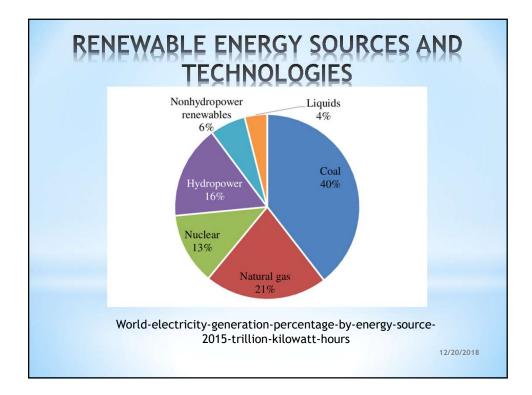


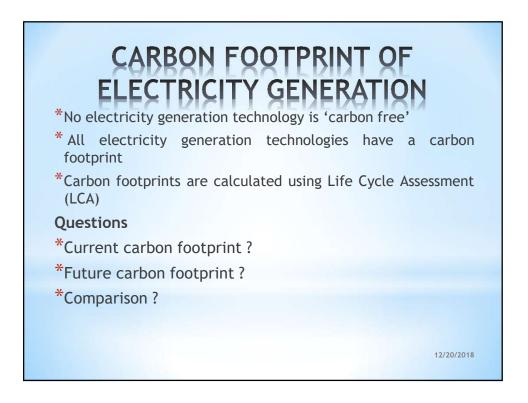
### RENEWABLE ENERGY SOURCES AND TECHNOLOGIES

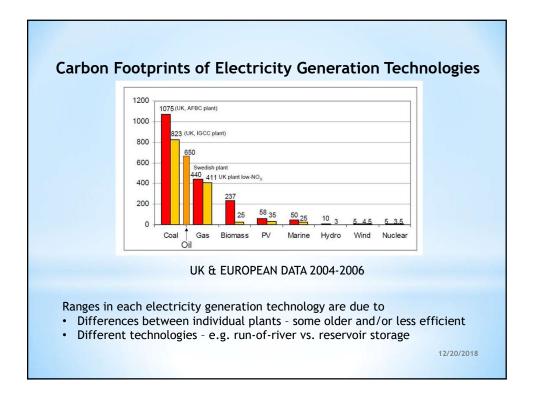
- \*Bioenergy can be produced from a variety of biomass feed stocks, including forest, agricultural and livestock residues; short-rotation forest plantations; energy crops; the organic component of municipal solid waste; and other organic waste streams. Through a variety of processes, these feed stocks can be directly used to produce electricity or heat, or can be used to create gaseous, liquid, or solid fuels
- \* Direct solar energy technologies harness the energy of solar irradiance to produce electricity using photovoltaics (PV) and concentrating solar power (CSP), to produce thermal energy (heating or cooling, either through passive or active means), to meet direct lighting needs and, potentially, to produce fuels that might be used for transport and other purposes

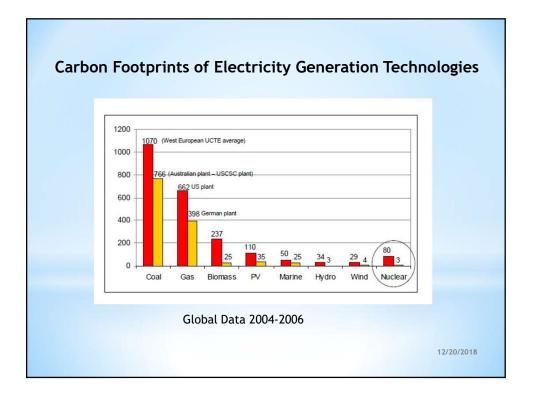
12/20/2018

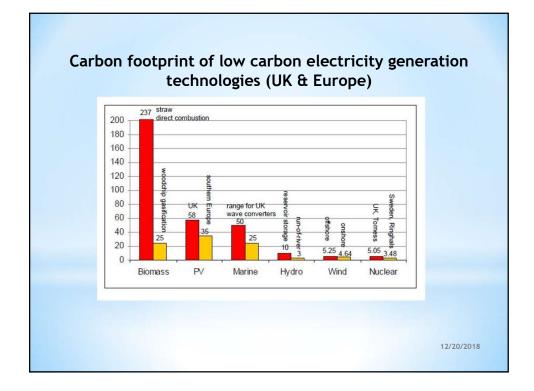

12/20/2018

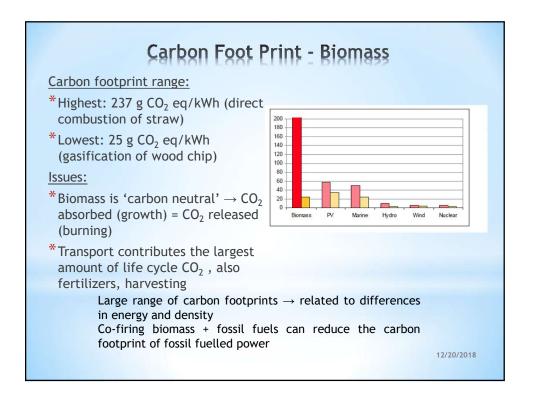

### RENEWABLE ENERGY SOURCES AND TECHNOLOGIES

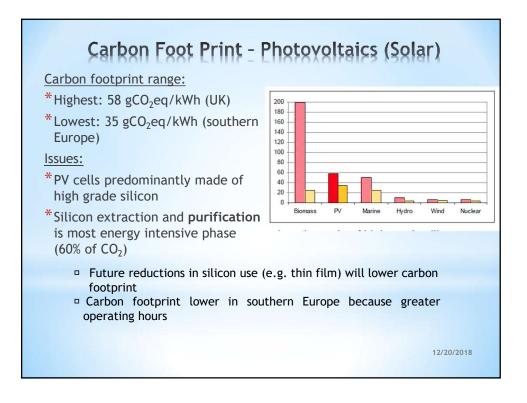

- \* Geothermal energy utilizes the accessible thermal energy from the Earth's interior. Heat is extracted from geothermal reservoirs using wells or other means. Reservoirs that are naturally sufficiently hot and permeable are called hydrothermal reservoirs, whereas reservoirs that are sufficiently hot but are improved with hydraulic stimulation are called enhanced geothermal systems (EGS)
- \*Hydropower harnesses the energy of water moving from higher to lower elevations, primarily to generate electricity. Hydropower projects encompass dam projects with reservoirs, run-of-river and in-stream projects and cover a continuum in project scale. This variety gives hydropower the ability to meet large centralized urban needs as well as decentralized rural needs

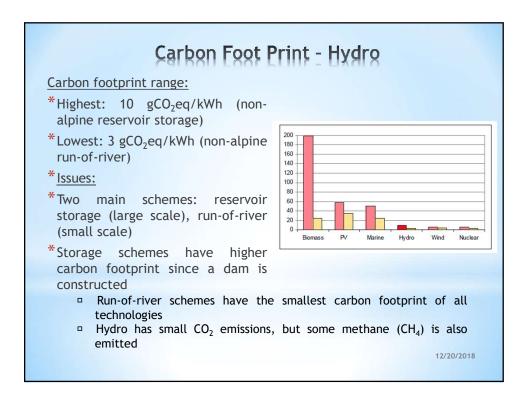

### RENEWABLE ENERGY SOURCES AND TECHNOLOGIES

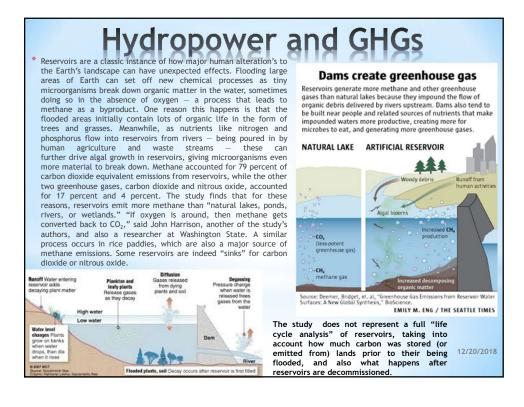

- \*Ocean energy derives from the potential, kinetic, thermal and chemical energy of seawater, which can be transformed to provide electricity, thermal energy, or potable water. A wide range of technologies are possible, such as barrages for tidal range, submarine turbines for tidal and ocean currents, heat exchangers for ocean thermal energy conversion, and a variety of devices to harness the energy of waves and salinity gradients
- \*Wind energy harnesses the kinetic energy of moving air. The primary application of relevance to climate change mitigation is to produce electricity from large wind turbines located on land (onshore) or in sea- or freshwater (offshore). Onshore wind energy technologies are already being manufactured and deployed on a large scale



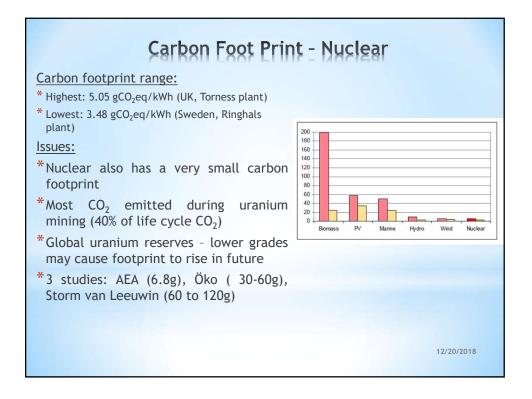



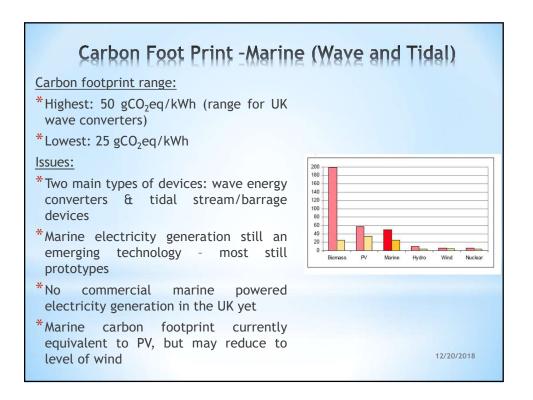



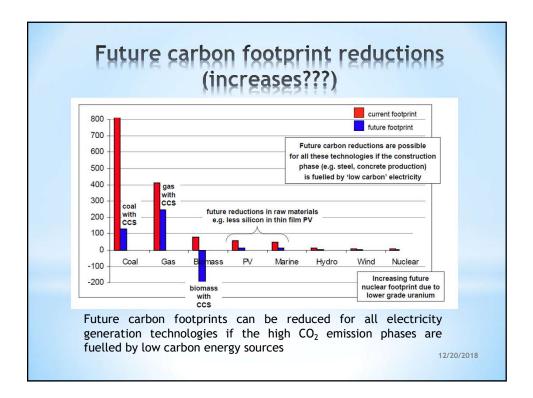



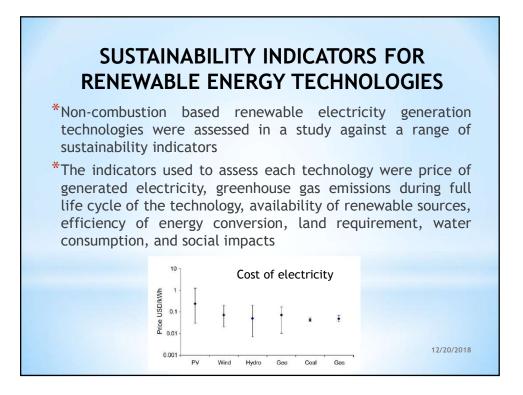





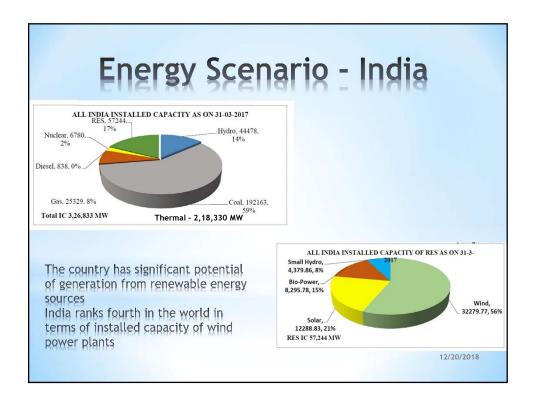



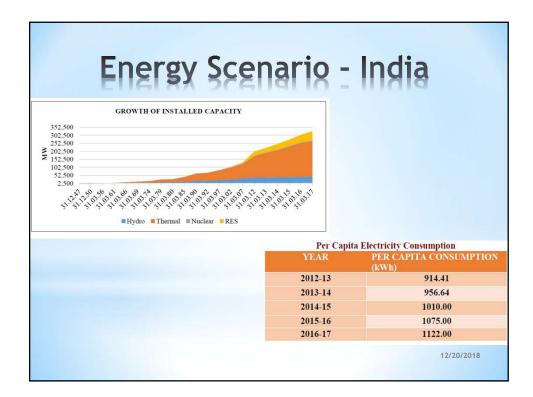



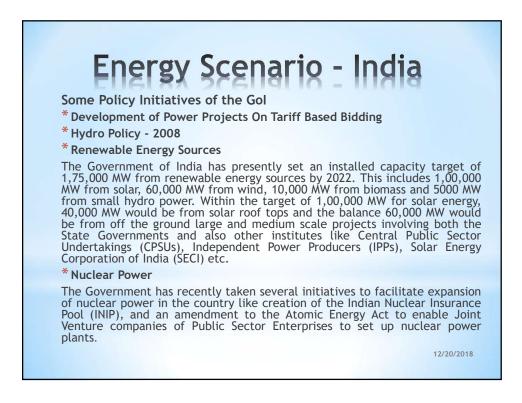

| Carbon Foot Pr<br><u>Carbon footprint range:</u><br>* Highest: 5.25 gCO <sub>2</sub> eq/kWh (UK offshore)<br>* Lowest: 4.64 gCO <sub>2</sub> eq/kWh (UK onshore)                                                                                            | int - Wind                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>Issues:</li> <li>* Wind has one of the lowest carbon footprints</li> <li>* 98% of emissions arise during manufacturing &amp; construction (steel, concrete)</li> <li>* Remaining emissions arise during maintenance phase of life cycle</li> </ul> | 200<br>180<br>160<br>140<br>120<br>100<br>80<br>60<br>40<br>20<br>0<br>Biomass PV Marine Hydro Wind Nuclear |
| * Footprint of offshore turbine is greater<br>due to larger foundations                                                                                                                                                                                     | 12/20/2018                                                                                                  |

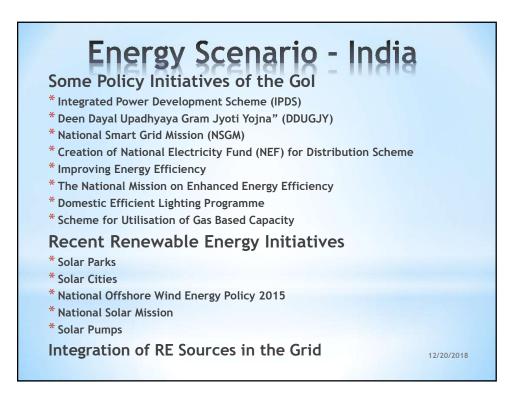


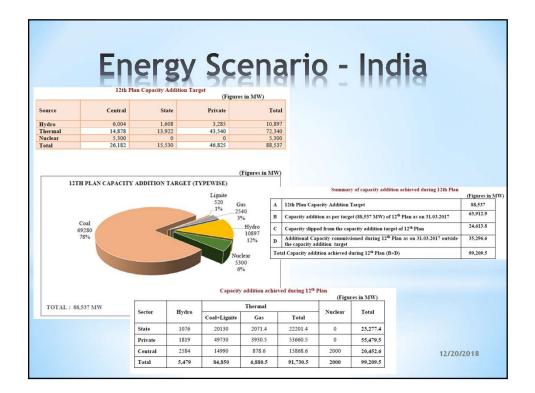






| SUSTAINABILITY<br>RENEWABLE ENER                                                                                                                                                     |                                                                                       |                                                                 | S                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                      | Water consumption in kg<br>Photovoltaic<br>Wind<br>Hydro<br>Geothermal<br>Coal<br>Gas | per WW h of electricity generation                              | n<br>10<br>1<br>36<br>12–300<br>78<br>78<br>78        |
|                                                                                                                                                                                      | Qualitative social imp                                                                |                                                                 |                                                       |
| U.1 PV Wind Hydro Geo Coal Gas                                                                                                                                                       | Fechnology<br>Photovoltaic<br>Wind                                                    | Impact<br>Toxins<br>Visual<br>Bird strike                       | Magnitude<br>Minor-maj<br>Minor<br>Minor              |
| Carbon dioxide equivalent<br>emissions during electricity<br>generation                                                                                                              | Hydro                                                                                 | Noise<br>Visual<br>Displacement<br>Agricultural<br>River Damage | Minor<br>Minor<br>Minor-maj<br>Minor-maj<br>Minor-maj |
| generation                                                                                                                                                                           | Geothermal                                                                            | Seismic activity<br>Odour<br>Pollution<br>Noise                 | Minor<br>Minor<br>Minor-maj<br>Minor                  |
| Efficiency of electricity generation                                                                                                                                                 |                                                                                       |                                                                 |                                                       |
| Photovoltaic         4–22%           Wind         24–54%           Hydro         >90%           Geothermal         10–20%           Coal         32–45%           Gas         45–53% |                                                                                       |                                                                 | 12/20/2018                                            |

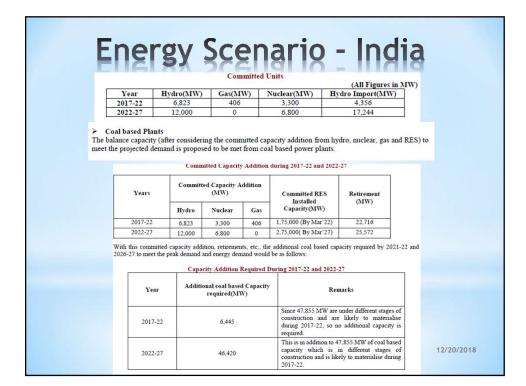

|                                          | Photovoltaics | Wind  | Hydro   | Geothermal |
|------------------------------------------|---------------|-------|---------|------------|
| Price                                    | 4             | 3     | 1       | 2          |
| CO <sub>2-e</sub> Emissions              | 3             | 1     | 2       | 4          |
| Availability and limitations             | 4             | 2     | 1       | 3          |
| Efficiency<br>Land use                   | 4             | 2     | 4       | 3          |
| Water consumption                        | 2             | 1     | 3       | 4          |
| Social impacts                           | 2             | 1     | 4       | 3          |
| Total                                    | 20            | 13    | 16      | 21         |
| evealed that wind<br>hotovoltaics and ge |               | he mo | ost sus | tainable,  |



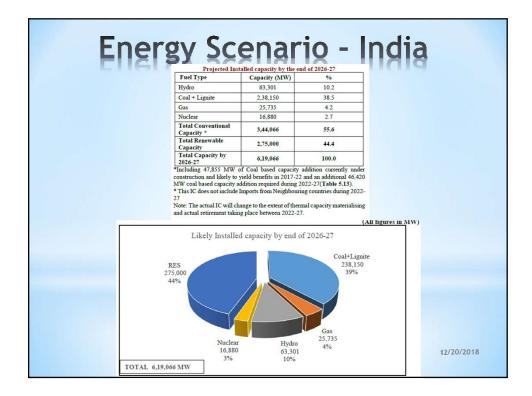


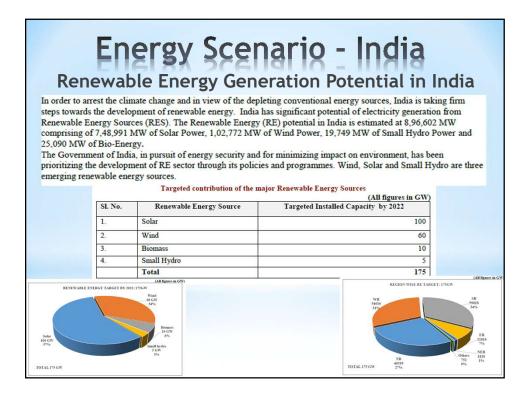








|                                               | Enormy                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | LIEISY                                                                                                                                                                                  | Scenar                                                                                                                                                                                                                                   | io - Indi                                                                                                                               | ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                               |                                                                                                                                                                                         |                                                                                                                                                                                                                                          |                                                                                                                                         | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nstalled capacity of                          | of renewable energy sources in the count<br>pacity addition of 16,744 MW was achiev                                                                                                     | ry at the end of 11th Plan (2007-12) was                                                                                                                                                                                                 | is 24,503 MW.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .g 11 <sup></sup> Plan, a cap                 | sacity addition of 16,744 MW was achiev                                                                                                                                                 | ed from renewable energy sources.                                                                                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ca                                            | apacity addition target for Renewable ]                                                                                                                                                 | Energy Sources during 12th Plan                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ca                                            | pacity addition target for itenewable                                                                                                                                                   | (Figures in MW)                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Source                                        |                                                                                                                                                                                         | Capacity                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solar                                         |                                                                                                                                                                                         | 10,000                                                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wind                                          |                                                                                                                                                                                         | 15,000                                                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other RES                                     |                                                                                                                                                                                         | 5,000                                                                                                                                                                                                                                    |                                                                                                                                         | (Figures in MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total                                         |                                                                                                                                                                                         | 30,000                                                                                                                                                                                                                                   | PES INSTALLED CABACITY I                                                                                                                | IN MW AS ON 31st MARCH 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               | from renewable energy sources in the co<br>talled capacity of Renewable energy so                                                                                                       | ources as on 31 <sup>st</sup> March,2017                                                                                                                                                                                                 | Wind Power<br>32279.77<br>56%                                                                                                           | Waste Por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Inst                                          | from renewable energy sources in the co<br>talled capacity of Renewable energy so                                                                                                       | untry is 57,244.23 MW as on 31.03.20<br>urces as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>Capacity                                                                                                                           | 32279.77                                                                                                                                | Waste Por<br>8295.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Inst<br>Source<br>Solar                       | from renewable energy sources in the co<br>talled capacity of Renewable energy so                                                                                                       | untry is 57,244.23 MW as on 31.03.20<br>purces as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>Capacity<br>12,288.83                                                                                                             | 32279.77                                                                                                                                | Waste Pol<br>8295.77<br>15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inst<br>Source<br>Solar<br>Wind               | from renewable energy sources in the co<br>talled capacity of Renewable energy so                                                                                                       | umtry is 57,244.23 MW as on 31.03.20<br>ources as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>Capacity<br>12.288.83<br>32,279.77                                                                                                | 32279.77                                                                                                                                | Waste Po-<br>Signal H<br>Small H<br>Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Source<br>Solar<br>Wind<br>Bio-Pov            | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power                                                                                | untry is 57,244.23 MW as on 31.03.20<br>urces as on 31 <sup>st</sup> March,2017<br>(Figures in MV)<br>12,288.83<br>32,279.77<br>8,295.78                                                                                                 | 32279.77                                                                                                                                | Waste For<br>Sinall H<br>Power<br>4379.7                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power                                                                                | untry is 57,244.23 MW as on 31.03.20<br>purces as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>Capacity<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86                                                                        | 32279.77                                                                                                                                | Wate Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Source<br>Solar<br>Wind<br>Bio-Pov            | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power                                                                                | untry is 57,244.23 MW as on 31.03.20<br>urces as on 31 <sup>st</sup> March,2017<br>(Figures in MV)<br>12,288.83<br>32,279.77<br>8,295.78                                                                                                 | 32279.77                                                                                                                                | Wate Po<br>595-77-15%<br>Small H<br>Pow<br>4359,<br>5%                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Jydro                                                                       | untry is 57,244.23 MW as on 31.03.20<br>varces as on 33 <sup>14</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24                                                                       | Tetal : 57,244.24 MW                                                                                                                    | Selar Power<br>1228533                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Jydro                                                                       | untry is 57,244.23 MW as on 31.03.20<br>purces as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24<br>lition achieved from Renewable                                     | Total : 57,244.24 MW                                                                                                                    | Salar Porer<br>1255<br>Salar Porer<br>122853<br>2156                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Jydro<br>Capacity add                                                       | untry is 57,244.23 MW as on 31.03.20<br>purces as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24<br>lition achieved from Renewable                                     | Tetal : 57,244.24 MW<br>Energy Sources during 12th Pla<br>17<br>(Figures in M                                                           | Salar Poner<br>1258<br>2215<br>358<br>2215<br>358<br>2215<br>358<br>235<br>235<br>235<br>235                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Hydro<br>Capacity add<br>Source                                             | untry is 57,244.23 MW as on 31.03.20<br>purces as on 31 <sup>st</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24<br>lition achieved from Renewable                                     | Tetal : 57,244.24 MW<br>E Energy Sources during 12th Pla<br>17<br>(Figures in M<br>Capacity                                             | Selar Poor<br>15%<br>Selar Poor<br>22%<br>3%                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Tydro<br>Capacity add<br>Source<br>Solar                                    | untry is 57,244.23 MW as on 31.03.20<br>surces as on 33 <sup>14</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24<br>lition achieved from Renewable<br>as on 31 <sup>st</sup> March,201 | Tetal : 57,244.24 MW<br>E Energy Sources during 12th Pla<br>17<br>(Figures in M<br>Capacity<br>11,347.5                                 | Star Pore<br>Star Pore<br>1258.5<br>Star Pore<br>1228.8.3<br>21%<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                             |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Hydro<br>Capacity add<br>Source<br>Solar<br>Wind                            | untry is 57,244.23 MW as on 31.03.20<br>surces as on 33 <sup>14</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24<br>lition achieved from Renewable<br>as on 31 <sup>st</sup> March,201 | Tetal : 57,244.24 MW<br>Energy Sources during 12th Pla<br>17<br>(Figures in M<br>Capacity<br>11,347,5<br>15,383.1                       | Solar Poor<br>15%<br>Solar Poor<br>15%<br>Solar Poor<br>1228.83<br>21%<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                       |
| Source<br>Solar<br>Wind<br>Bio-Pow<br>Small H | from renewable energy sources in the co<br>talled capacity of Renewable energy so<br>wer and waste power<br>Hydro<br>Capacity add<br>Source<br>Solar<br>Wind<br>Bio-Power and waste pow | untry is 57,244.23 MW as on 31.03.20<br>surces as on 33 <sup>14</sup> March,2017<br>(Figures in MW)<br>12,288.83<br>32,279.77<br>8,295.78<br>4,379.86<br>57,244.24<br>lition achieved from Renewable<br>as on 31 <sup>st</sup> March,201 | 2017.<br>Tetal : 57,244.24 MW<br>E Energy Sources during 12th Pla<br>17<br>(Figures in M<br>Capacity<br>11,347.5<br>15,383.1<br>5,040.7 | 15%<br>5%<br>5%<br>1228.5%<br>5%<br>1228.5%<br>5%<br>1228.5%<br>5%<br>1228.5%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>5%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12%<br>12 |


| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scenario - India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energy Efficiency Initiatives by BEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Regulatory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Market Transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Mandatory Standards and<br>Labelling (S&L) for selective<br>appliances and equipment     Energy Conservation Building<br>Code (ECBC)     Energy usage norms for large<br>industries through Perform-<br>Achieve-Trade (PAT) scheme     Certification of Energy<br>Efficiency professionals<br>(Energy Auditors and Energy<br>Managers)     Fuel efficiency norms for<br>passenger cars     Mandatory Energy Audit of<br>large industries     State level regulations<br>(appliances, buildings &<br>industry sector) | Promotion of energy efficiency in Agriculture and Municipality sectors to<br>reduce peak demand: Identification of options in AgDSM, MuDSM and<br>SME programs     Formulate and Promote EE and new technologies: CFL, LED, Waste Heat<br>Recovery, Tri-generation etc.     Promote and facilitate usage of energy efficient appliances: Public<br>Procurement     Market transformation of large industries in adopting EE technologies:<br>Energy Saving certificates in PAT scheme     Capacity Building of DISCOMS for implementation of DSM measures     Create awareness and disseminate information on energy efficiency and<br>conservation: Consumer awareness program     Promote use of CFLs through innovative financing i.e. Bachat Lamp Yojana<br>through CDM route     Promote use of LEDs through innovative financing i.e. Domestic Efficient<br>Lighting Program     Promote Super-Efficient Appliance Deployment (SEAD) in colour TVs by<br>international recognition: SEAD program under Clean Energy Ministerial     International co-operation |            |
| Fiscal Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Financial Incentives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Creation of Partial Risk<br>Guarantee Fund (PRGF) and<br>Venture Capital Fund (VCF)     Creation of State Energy<br>Conservation Funds (SECF)                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Formulate and facilitate implementation of pilot projects and demonstration<br/>projects: AgDSM, WHR projects in States, LED street lighting, LED village<br/>campaign</li> <li>Enhancement of laboratory facilities for testing of energy efficient<br/>appliances: Laboratory capacity building program</li> <li>Provision of incentives to manufactures in Super-Efficient Equipment<br/>Program (SEEP)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/20/2018 |

| ner                                   | Ø1               | Sc                                   | en                     | ari           | 0 -                   | Inc                                            | 112       |
|---------------------------------------|------------------|--------------------------------------|------------------------|---------------|-----------------------|------------------------------------------------|-----------|
| -11213                                | 5J               | 56                                   | 211                    | 811           | Χ_                    | 1112                                           | 118       |
| Electrical energy con                 |                  |                                      |                        |               |                       |                                                | d for the |
| year                                  | rs 2016-1        | 7, 2021-22 & 20                      | 26-27 on all-I<br>Year | ndia basis as | per 19th EPS I<br>CAG |                                                | 1         |
|                                       |                  |                                      | Teat                   |               | 2016-17               | 2021-22                                        |           |
|                                       |                  | 2016-17                              | 2021-22                | 2026-27       | to<br>2021-22         | to<br>2026-27                                  |           |
| Electrical energy<br>consumption (MU) |                  | 920,837                              | 1,300,486              | 1743,086      | 7.15                  | 6.03                                           |           |
| T&D losses (MU)                       |                  | 239,592                              | 265,537                | 304,348       |                       |                                                | 1         |
| T&D losses (%)                        | lectrical energy |                                      | 16.96                  | 14.87         |                       |                                                | 1         |
| Electrical energy<br>requirement (MU) |                  |                                      | 1566,023               | 2047,434      | 6.18                  | 5.51                                           | 1         |
| Peak Electricity Den<br>(MW)          | nand             | 161,834                              | 225,751                | 298,774       | 6.88                  | 5.77                                           |           |
| Derived Load factor                   | (%)              | 81.85                                | 79.19                  | 78.23         |                       |                                                |           |
| RES<br>Category                       | Target           | d RES Capac<br>RES IC as<br>.03.2022 | RES Install            |               | (<br>Expecte          | All figures in<br>d RES Capac<br>n from 2017-2 | ity       |
| Solar                                 | 1,0              | 00,000                               | 12,                    | 289           |                       | 87,711                                         |           |
| Wind                                  | 6                | 0,000                                | 32,                    | 280           |                       | 27,720                                         |           |
| Biomass                               | 1                | 0,000                                | 82                     | 95            |                       | 1,705                                          |           |
| Small Hydro                           | 5                | ,000                                 | 43                     | 80            |                       | 620                                            |           |
| Total                                 | 1,1              | 5,000                                | 57:                    | 244           |                       | 1,17,756                                       |           |



| Hydro<br>Coal + Lignite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51,301<br>2,17,302 | 10.7  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 17 202           |       |
| a contraction of the second seco | 2,17,302           | 45.3  |
| Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25,735             | 5.4   |
| Nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,080             | 2.1   |
| Total Conventional Capacity<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,04,419           | 63.5  |
| Total Renewable Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,75,000           | 36.5  |
| Total Capacity by 2021-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,79,418           | 100.0 |
| LIKELY INSTALLED C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | (Al   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |       |

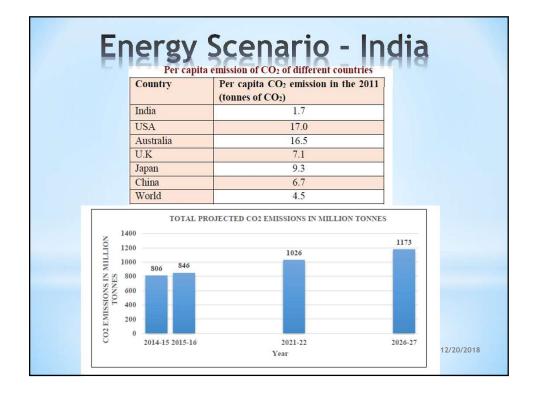




| Гра                                             |                         |            |                      |                            |                         |            | 4:                 |                  |                |                                                        |
|-------------------------------------------------|-------------------------|------------|----------------------|----------------------------|-------------------------|------------|--------------------|------------------|----------------|--------------------------------------------------------|
| Eng                                             | rgy S                   | cer        | 141.1                | 0.1                        |                         | 1.11       |                    |                  |                |                                                        |
| PROJECTED RES INSTALLED CA                      | PACITY IN RE RICH STATI | ES BY      | Estimat              | ted Electricity            |                         |            |                    |                  |                | 26-27                                                  |
| 2021                                            |                         |            |                      | Installed                  |                         | Expected   | Generatio          | on in (BU        | )              | -                                                      |
| Madhya Pradesh<br>7%<br>Uttar Pradesh<br>8%     | Others*<br>23%          |            | Year                 | capacity<br>of RES<br>(GW) | Solar                   | Wind       | Biomass            | SHP              | Total          | Contribution<br>of RES to<br>Total Energy<br>Demand(%) |
| Rajasthan                                       |                         |            | 2021-22              | 175                        | 162                     | 112        | 37                 | 15               | 326            | 20.1%                                                  |
| 8%                                              |                         |            | 2026-27              | 275                        | 243                     | 188        | 63                 | 24               | 518            | 24.4%                                                  |
| Gujarat<br>10%<br>PROJECTED RES CAPACITY 175 GW | Andhra Pradesh          | OTHER      | ATE-WISE DETAIL      |                            | (ALL FI                 | GURES I    | N MW)<br>Bio-Energ |                  | BLE POW        |                                                        |
|                                                 |                         | SI.<br>No. | States / UTs         | Wind<br>Power              | Small<br>Hydro<br>Power | Poy<br>Bag |                    | aste to<br>nergy | Solar<br>Power | Total<br>Estimated<br>Potential                        |
|                                                 |                         | 1          | Andhra Pradesh       | 14,497                     | 978                     |            | 78                 | 423              | 38,440         | 54,916                                                 |
|                                                 |                         | 2          | Arunachal<br>Pradesh | 236                        | 1,341                   | 1          | 8                  | 0                | 8,650          | 10,236                                                 |
|                                                 |                         | 3          | Assam                | 112                        | 239                     | _          | 12                 | 8                | 13,760         | 14,330                                                 |
|                                                 |                         | 4          | Bihar                | 144                        | 223                     | 6          |                    | 373              | 11,200         | 12,559                                                 |
|                                                 |                         | 5          | Chhattisgarh         | 314                        | 1,107                   |            | 36                 | 24               | 18,270         | 19,951                                                 |
|                                                 |                         | 6          | Goa                  | 0 35.071                   | 7 202                   | _          | 26                 | 0<br>462         | 880            | 912<br>72,726                                          |
|                                                 |                         | 8          | Gujarat<br>Harvana   | 35,071<br>93               | 110                     |            | 333                | 374              | 4,560          | 6,470                                                  |
|                                                 |                         | 9          | Himachal<br>Pradesh  | 64                         | 2,398                   |            | 42                 | 2                | 33,840         | 36,446                                                 |
|                                                 |                         | 10         | Jammu &<br>Kashmir   | 5,685                      | 1,431                   | 4          | 13                 | 0                | 1,11,050       | 1,18,208                                               |
|                                                 |                         | 11         | Jharkhand            | 91                         | 209                     | 9          | 0                  | 10               | 18,180         | 18,580                                                 |
|                                                 |                         | 12         | Kamataka             | 13,593                     | 4141                    | 1,1        | 131                | 450              | 24,700         | 44,015                                                 |
|                                                 |                         |            |                      |                            |                         |            |                    |                  |                |                                                        |

## Energy Scenario - India

## Hydro Power - A Flexible Solution

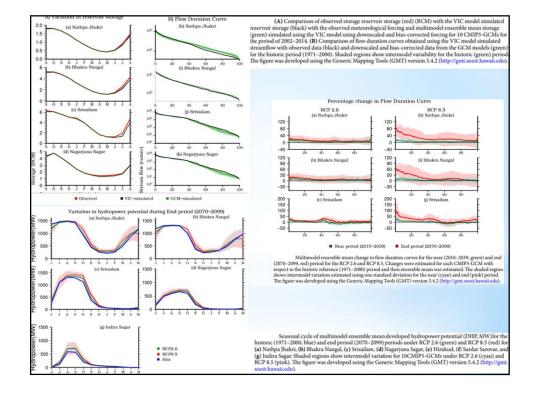

The power system operation stability requires the system to minimise fluctuations between demand and supply. This encompasses, for example, short term reserves (generation, storage, demand response) to cover potential incidents, which decrease power supply to the system, or to respond to short-term variations in demand and generation. Hydropower therefore provides an ideal solution for the challenges of a transitioning power system.

Conventional reservoir-type hydropower plants and pumped storage power plants can provide the full range of gridstabilising services in view of their ability to follow demand or generation fluctuations within only a few minutes. There are several different ancillary services or grid stabilising services of hydropower, thus facilitating the integration of variable RES into the power system and providing a key tool to maintain a stable and balanced grid:

\*Pumped Storage Plants - The Best Friend of an Electricity Grid While many forms of energy storage systems have been installed globally, Pumped Storage Plants (PSP) are playing an increasingly important role in providing peaking power and maintaining system stability in the power system of many countries. Pumped storage technology is the long term technically proven, cost effective, highly efficient and operationally flexible way of energy storage on a large scale to store intermittent and variant energy generated by solar and wind.

Out of 96,524 MW of pumped storage potential identified in India by CEA at 63 sites, at present 9 pumped storage schemes with aggregate installed capacity of 4,786 MW are in operation out of which only 5 Nos. plants with aggregate installed capacity of 2,600 MW are being operated in pumping mode. The remaining 4 Nos. plants with an installed capacity of about 2,200 MW are not operating in pumping mode mainly because the 2<sup>nd</sup> reservoir is either under construction or the same has not been constructed. Efforts should be made to complete and operationalize the pump storage projects not running in PSP mode by resolving the issues.

12/20/2018



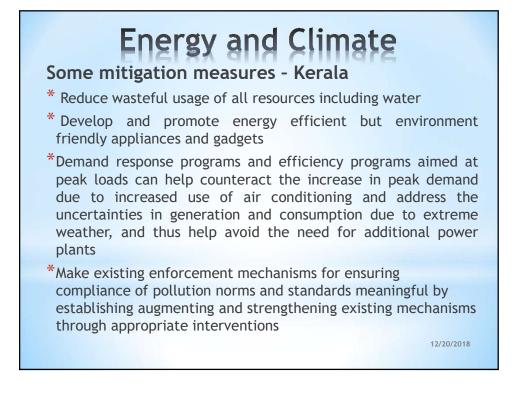

| – Fr                                                                                                                               | ergy S                                                                                                                                                                            | cena                                                                                                                                                  | rio -                                                                                                                                     | India                                                                                                       | a l      |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                           | IIIXIX                                                                                                      | 4        |
| COUNTRY'                                                                                                                           | S STAND ON CLIMATE                                                                                                                                                                | CHANGE- INDCs                                                                                                                                         |                                                                                                                                           |                                                                                                             |          |
| Under the Copenha                                                                                                                  | gen Accord, India had pledg                                                                                                                                                       | ed to reduce its CO2 i                                                                                                                                | ntensity (emissions p                                                                                                                     | er GDP) by 20 to 25                                                                                         | percent  |
|                                                                                                                                    | to 2005 levels. Also in O                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
|                                                                                                                                    | ) to UNFCCC. The key ele                                                                                                                                                          |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
|                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
| <ul> <li>To reduce</li> </ul>                                                                                                      | the emissions intensity of its                                                                                                                                                    | s GDP by 33% to 35 %                                                                                                                                  | 6 by 2030 from 2005                                                                                                                       | level.                                                                                                      |          |
| <ul> <li>To achieve</li> </ul>                                                                                                     | about 40 percent cumulati                                                                                                                                                         | ve electric power inst                                                                                                                                | alled capacity from a                                                                                                                     | non-fossil fuel based                                                                                       | energy   |
| resources by                                                                                                                       | 2030, with the help of tran                                                                                                                                                       | nsfer of technology an                                                                                                                                | d low cost internation                                                                                                                    | onal finance includin                                                                                       | g from   |
| Green Clima                                                                                                                        | e Fund (GCF).                                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
| • To create a                                                                                                                      | n additional carbon sink of                                                                                                                                                       | 2.5 to 3 billion tonnes                                                                                                                               | of CO2 equivalent t                                                                                                                       | hrough additional for                                                                                       | est and  |
|                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
| tree cover by                                                                                                                      | 2030                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
| tree cover by                                                                                                                      | 2030.                                                                                                                                                                             |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
|                                                                                                                                    |                                                                                                                                                                                   | f capacity addition pre                                                                                                                               | ogramme for 2017-22                                                                                                                       | 2 and 2022-27 is in li                                                                                      | ne with  |
| The studies show th                                                                                                                | at the proposed trajectory o                                                                                                                                                      | f capacity addition pro                                                                                                                               | ogramme for 2017-22                                                                                                                       | 2 and 2022-27 is in li                                                                                      | ne with  |
| The studies show th<br>India's submissions                                                                                         | at the proposed trajectory o<br>under INDCs.                                                                                                                                      |                                                                                                                                                       |                                                                                                                                           |                                                                                                             |          |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2                                                       | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel                                                                                                     | based capacity (Hydr                                                                                                                                  | o + Nuclear + RES)                                                                                                                        | in the total installed o                                                                                    | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar                               | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th                                                                     | l based capacity (Hydr<br>hat the share of non-fo                                                                                                     | o + Nuclear + RES)<br>ossil based capacity v                                                                                              | in the total installed o                                                                                    | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar                               | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th<br>will further increase to 57.                                     | l based capacity (Hydr<br>hat the share of non-fo<br>4 % by the end of 2020                                                                           | o + Nuclear + RES)<br>ossil based capacity v<br>5-27.                                                                                     | in the total installed o<br>will increase to 49.3%                                                          | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar<br>end of 2021-22 and         | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th<br>will further increase to 57.4<br>In                              | l based capacity (Hydr<br>hat the share of non-fo<br>4 % by the end of 2020<br>istalled capacity and s                                                | o + Nuclear + RES)<br>ossil based capacity v<br>6-27.<br>hare of non-fossil fue                                                           | in the total installed c<br>will increase to 49.3%<br>el                                                    | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar                               | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th<br>will further increase to 57.<br>In<br>Installed                  | l based capacity (Hydr<br>hat the share of non-fo<br>4 % by the end of 2020<br>istalled capacity and s<br>Installed                                   | o + Nuclear + RES)<br>ossil based capacity v<br>5-27.<br>hare of non-fossil fu<br>Installed                                               | in the total installed o<br>will increase to 49.3%<br>el<br>%of Non-fossil                                  | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar<br>end of 2021-22 and         | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th<br>will further increase to 57.4<br>In                              | l based capacity (Hydr<br>hat the share of non-fc<br>4 % by the end of 2020<br>stalled capacity and s<br>Installed<br>Capacity of                     | o + Nuclear + RES)<br>ossil based capacity v<br>5-27.<br>hare of non-fossil fue<br>Installed<br>Capacity of Non-                          | in the total installed o<br>will increase to 49.3%<br>el<br>%of Non-fossil<br>fuel in Installed             | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar<br>end of 2021-22 and         | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th<br>will further increase to 57.<br>In<br>Installed                  | l based capacity (Hydr<br>hat the share of non-fo<br>4 % by the end of 2020<br>istalled capacity and s<br>Installed                                   | o + Nuclear + RES)<br>ossil based capacity v<br>5-27.<br>hare of non-fossil fu<br>Installed                                               | in the total installed o<br>will increase to 49.3%<br>el<br>%of Non-fossil                                  | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar<br>end of 2021-22 and<br>Year | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected ti<br>will further increase to 57.<br>In<br>Installed<br>Capacity (MW) | l based capacity (Hydr<br>hat the share of non-fe<br>4 % by the end of 202:<br>stalled capacity and s<br>Installed<br>Capacity of<br>Fossil fuel (MW) | o + Nuclear + RES)<br>sssil based capacity v<br>5-27.<br>hare of non-fossil fur<br>Installed<br>Capacity of Non-<br>Fossil** fuel<br>(MW) | in the total installed c<br>will increase to 49.3%<br>el<br>%of Non-fossil<br>fuel in Installed<br>Capacity | capacity |
| The studies show th<br>India's submissions<br>As on 31 <sup>st</sup> March,2<br>of the country is ar<br>end of 2021-22 and         | at the proposed trajectory o<br>under INDCs.<br>017, share of non-fossil fuel<br>ound 33 %. It is expected th<br>will further increase to 57<br>In<br>Installed<br>Capacity (MW)  | l based capacity (Hydr<br>hat the share of non-fc<br>4 % by the end of 2020<br>stalled capacity and s<br>Installed<br>Capacity of                     | o + Nuclear + RES)<br>ossil based capacity v<br>5-27.<br>hare of non-fossil fue<br>Installed<br>Capacity of Non-<br>Fossil++ fuel         | in the total installed o<br>will increase to 49.3%<br>el<br>%of Non-fossil<br>fuel in Installed             | capacity |

|                                                                            |          | Years        |          |  |
|----------------------------------------------------------------------------|----------|--------------|----------|--|
|                                                                            | 2005     | 2022         | 2027     |  |
| Emission intensity kg/₹ GDP                                                | 0.015548 | 0.009249     | 0.007207 |  |
| % Reduction in emission<br>intensity base 2005                             |          | 40.51        | 53.65    |  |
| <br>CO2 emission rate from coal base<br>n efficiency of power generation t |          | d nower plac | te       |  |

## Hydropower Production under Projected Climate Change - A Study

\* In this study, using observations and model simulations, the authors showed that seven large hydropower projects that experienced significant warming and a decline in precipitation and streamflow during the observed period of 1951-2007, are all projected to experience a warmer and wetter climate in the future. Multimodel ensemble mean annual average temperature (precipitation) is projected to rise up to  $6.3 \pm 1.6$  °C ( $18 \pm 14.6\%$ ) in the catchments upstream of the other reservoirs by the end of the 21st century under RCP8.5. Due to the projected increase in precipitation, mean annual streamflow (up to +45%) and hydropower (up to +25%) production are projected to rise under the future climate. However, significant warming ( $6.25 \pm 1.62$  °C) is projected to result in a decline in streamflow and hydropower production in May- June for snow-dominated Nathpa Jhakri and Bhakra Nangal hydropower projects.




| Transmission &   | KERALA<br>Distribution Lir |                  | M AT A GLANCE       | (AS ON 31.10.2 | 017)        |        |
|------------------|----------------------------|------------------|---------------------|----------------|-------------|--------|
| 400KV            | 220KV                      | 110KV            | 66KV                | 33KV           | 11KV        | LT     |
| 571.96 km        | 2801.88 km                 | 4484.05 km       | 2154.973 km         | 1929.03 km     | 59946 km    | 285506 |
| Total connected  | l load                     |                  |                     | : 22,040.62M   | W           |        |
| Total internal g | eneration (2016            | 5-'17)           |                     | : 4,369.54 M   | U           |        |
| Total power pu   | rchased at Kera            | la (2016-'17)    |                     | : 19,050.17 N  | 10          |        |
| Energy sales to  | other state (20            | 16-'17)          |                     | : 49.3 M       | U           |        |
| Energy input to  | Kerala/ Total s            | ale within state | e <b>(2016-'17)</b> | : 23,325.95/   | 20,038.25 M | U      |
| Per capita cons  | umption (2016)             | as per above     |                     | : 582 KWh      |             |        |
| Transmission &   | Distribution los           | sses(2016-2017   | 7)                  | : 3287.70 M    | J           |        |
| Maximum daily    | consumption 2              | 016-2017)        |                     | : 80.44MU (2   | 29.04.2016) |        |
| Average daily c  | onsumption(20)             | 16-2017)         |                     | : 65.26 MU     |             |        |

|     | EIIGI M                                         |                  |                                |            |                                                  |                               |                                  |
|-----|-------------------------------------------------|------------------|--------------------------------|------------|--------------------------------------------------|-------------------------------|----------------------------------|
|     |                                                 |                  | 206                            | <u></u>    | ario - Ker                                       | did                           | 3                                |
|     | GENERATING STATIONS KERALA - C                  | VERVIEW          |                                | 1          |                                                  |                               |                                  |
| SI. | Name of Station                                 | Installed        | Annual                         |            | GENERATING STATIONS KERALA - O                   |                               |                                  |
| No. |                                                 | Capacity<br>(MW) | Generation<br>Capacity<br>(MU) | SI.<br>No. | Name of Station                                  | Installed<br>Capacity<br>(MW) | Annual<br>Generation<br>Capacity |
|     | la. Hydro Electric Projects (                   |                  |                                |            |                                                  |                               | (MU)                             |
| 1   | ldukki                                          | 780              | 2398                           |            | Ic. Other Hydro Electric Proje                   | cts (Pvt.)                    |                                  |
| 2   | Sabarigiri                                      | 340              | 1338                           | 1          | Kuthunkal (CPP)                                  | 21                            | 79                               |
|     | Kuttiyadi HEP, Extension & KAES (75 + 50 + 100) | 225              | 566                            | 2          | Maniyar (CPP)                                    | 12                            | 36                               |
| 4   | Lower Periyar                                   | 180              | 493                            | 3          | Ullunkal (IPP)                                   | 7                             | 32                               |
| 5   | Neriamangalam & Extension (52.65 + 25)          | 77.65            | 295.27                         | 4          | Iruttukanam (IPP)                                | 4.5                           | 15.86                            |
| 6   | Idamalayar                                      | 75               | 380                            | 5          | Karikkayam                                       | 10.5                          | 43.69                            |
| 8   | Sholayar<br>Kakkad                              | 54               | 233                            | 6          | Meenvallam (Dist. Palakkad)                      | 3                             | 8.37                             |
| 8   | Poringalkuth & PLBE (36 + 16)                   | 50               | 262                            | 7          | Pampumkeyam                                      | 0.11                          | .029                             |
| 10  | Sengulam                                        | 51.2             | 182                            | 8          | Kallar                                           | 0.05                          | 0.13                             |
| 11  | Pallivasal                                      | 37.5             | 284                            | -          | Sub Total                                        | 58.16                         | 215.34                           |
| 12  | Pannivar                                        | 32.4             | 158                            |            | Total (la + lb + lc)                             | 2113.91                       | 7401.66                          |
| 12  | Sub total                                       | 1954.75          | 6833.37                        |            | II. THERMAL                                      | 2110.01                       | 7402100                          |
|     | Ib. Small Hydro Electric Proje                  |                  | 0055.57                        | 1          | Kayamkulam (NTPC) (CENTRAL SECTOR)               | 359.58                        | 2158                             |
| 1   | Kallada                                         | 15               | 65                             | 2          | BSES Kerala Power Ltd. (BKPL) (Pvt. IPP)         | 157                           | 1099                             |
| 2   | Malankara                                       | 10.5             | 65                             | 3          | Kozhikode Diesel Power Plant (KSEB)              | 96                            | 597                              |
| 3   | Poozhithodu                                     | 4.8              | 10.97                          | 4          | Brahmapuram Diesel Power Plant (KSEB)            | 63.96                         | 364                              |
| 4   | Ranni-Perunad                                   | 4                | 16.73                          | 5          | Kasargode Power Corporation Pvt. Ltd. IPP        | 21.90                         | 140                              |
| 5   | Kuttiyadi Tailrace                              | 3.75             | 17                             | 6          | MPS Steel Co-Generation Plant Pvt. IPP           | 10                            | 67.63                            |
| 6   | Chembukadavu Stage 1                            | 2.7              | 6.59                           | 5          | Philips Carbon Black India – Co Generation Plant | 10                            | 70.08                            |
| 7   | Chembukadavu Stage 11                           | 3.75             | 9.03                           |            | Total                                            | 10<br>718.44                  | 4495.71                          |
| 8   | Urumi-1                                         | 3.75             | 9.72                           |            |                                                  | /18.44                        | 4495.71                          |
| 9   | Urumi 11                                        | 2.4              | 6.28                           |            | III.WIND                                         | 2.025                         | I .                              |
| 10  | Lower Meenmutty                                 | 3.5              | 7.63                           | 1          | Kanjikkode (9 x 0.225MW) (KSEB)                  | 2.025                         | 4                                |
| 11  | Peppara<br>Malampuzha                           | 3                | 11.5<br>5.6                    | 2          | Ramakkalmedu (9 x 0.75MW) (Pvt. IPP))            | 14.25                         | 32.46                            |
| 12  | Malampuzha<br>Mattuppetty                       | 2.5              | 5.6                            | 3          | Agali (31 x 0.6MW) (Pvt. IPP)                    | 18.6                          | 37.47                            |
| 13  | Peechi                                          | 1.25             | 3.315                          | 4          | Ahalia, Kanjikode (4 x 2.1 MW)                   | 8.40                          | 16.19                            |
| 14  | Vilangad                                        | 7.5              | 22.63                          |            | Total                                            | 43.275                        | 90.12                            |
| 15  | Chimmony                                        | 2.5              | 6.7                            |            | IV. SOLAR                                        |                               |                                  |
| 17  | Andavanpara                                     | 3.5              | 9.01                           |            | KSEB (8.546MW), CIAL (IPP - 20.5273 MW),         | 82.0733                       | 131.93                           |
| 18  | Barapole                                        | 15               | 36                             | 1 📖        | Solar Park Ambalathara                           |                               |                                  |
| 19  | Vettathooval                                    | 3.6              | 12.17                          | 1          | (IPP-50MW), ANERT Kuzhalmandam (IPP -            |                               |                                  |
| 20  | Perunthenaruvi                                  | 6                | 25.77                          |            | 2MW), HINDALCO (IPP - 1MW)                       |                               |                                  |
|     | Sub Total                                       | 101              | 353.05                         |            | Total Installed Capacity                         | 2957.7                        | 12119.42                         |

## <section-header> Energy and Climate Some mitigation measures - Kerala \* Promote low carbon foot print options for energy generation - solar, small hydro etc as well as hydro including pumped storage \* Chalk out an implement a plan of action in line with the National Action Plan on Climate Change and its component National Missions such as those pertaining to Solar, Energy Efficiency, Water, Sustainable Habitat, Green India etc. \* Improve the operational efficiency of existing power projects \* Reduce losses in transmission and distribution \* Instributed generation and commissioning of smart grids \* Incorporate and implement energy conservation measures through appropriate measures including enforcement through building codes and appropriate appropriate deformation appropriate deformation ap

\* Promote energy efficient buildings - future proofing of buildings by appropriate measures such as adding additional insulation, increasing use of daylighting, window shading and natural ventilation, energy audits and recommissioning to ensure building performance, blending traditional wisdom into modern architecture and building construction

12/20/2018

